Tuesday, 15 March 2016

SISTEM REFRIGERASI

1.1. Umum.

Sistem refrigerasi sangat menunjang peningkatan kualitas hidup manusia. Kemajuan dalam bidang refrigerasi akhir-akhir ini adalah akibat dari perkembangan sistem kontrol yang menunjang kinerja dari sistem refrigerasi.

Aplikasi dari sistem refrigerasi tidak terbatas, tetapi yang paling banyak digunakan adalah untuk pengawetan makanan dan pendingin suhu, misalnya lemasi es, freezer, cold strorage, air conditioner/AC Window, AC split dan AC mobil.      Dengan perkembangan teknologi saat ini, refrigeran (bahan pendingin) yang di pasarkan dituntut untuk ramah lingkungan, disamping aspek teknis lainnya yang diperlukan. Apapun refrigeran yang dipakai, semua memiliki kelebihan dan kekurangan masing-masing oleh karena itu, diperlukan kebijakan dalam memilih refrigerant yang paling aman berdasarkan kepentingan saat ini dan masa yang akan datang.

Selain itu, tak kalah pentingnya adalah kemampuan dan ketrampilan dari para
teknisi untuk mengaplikasikan refrigeran tersebut, baik dalam hal mekanisme kerja
sistem, pengontrolan maupun keselamatan kerja dalam pemakaiannya.
Image result for ac mobilImage result for food chillerImage result for ac



1.2. Siklus Refregerasi

Prinsip terjadinya suatu pendinginan di dalam sistem refrigerasi adalah penyerapan kalor oleh suatu zat pendingin yang dinamakan refrigeran. Karena kalor yang berada disekeliling refrigeran diserap, akibatnya refregeran akan menguap, sehingga temperatur di sekitar refrigeran akan menjadi dingin. Hal ini dapat terjadi mengingat penguapan memerlukan kalor.

Refrigeran dikompresikan sehingga bertemperatur dan bertekanan tinggi, kemudian masuk ke dalam kondensor untuk proses kondensasi karena adanya udara disekitar yang melewati kondensor.
Setelah itu refrigerant akan masuk kedalam receiver drier untuk proses penyaringan uap air dan kotoran yang ada didalamnya, setelah itu akan melewati katup ekspansi yang menyebabkan temperatur dan tekanannya menurun sehingga berubah menjadi kabut  masuk ke evaporator.

Didalam evaporator, refrigerant tersebut melakukan penyerapan panas sehingga terbentuk udara yang dingin dan dihembuskan bower kedalam kendaraan/ ruangan.

1.3. Komponen Sistem Refrigerasi  

Mekanik mesin pendingin terdiri dari beberapa komponen yang masing-masing dihubungkan dengan menggunakan pipa-pipa tembaga atau selang pada akhirnya merupakan sebuah system yang bekerja secara serempak ( simultan )

Komponen-komponen mesin pendingin yang digunakan adalah sebagai berikut :
a. Kompresor
b. Condensor
c. Receiver/ Dryer
d. Expansion Valve
e. Evaporator
f. Pipa refrigerant.

1.3.1. Kompresor & Magnetic Clutch

Kompresor digunakan untuk menaikan tekanan dan mensirkulasikan refrigerant yang ada pada sistem dengan cara mengkompresikannya.










Magnetic clutch digerakan oleh mesin melalui drive belt yang berfungsi untuk menggerakan kompresor dengan menghubungkan dan melepaskannya pada saat yang diperlukan.















1.3.2. Kondensor

Kondensor juga merupakan salah satu komponen utama dari sebuah mesin pendingin. Pada kondensor terjadi perubahan wujud refrigeran dari uap super-heated (panas lanjut) bertekanan tinggi ke cairan sub-cooled (dingin lanjut) bertekanan tinggi. Agar terjadi perubahan wujud refrigeran (dalam hal ini adalah pengembunan/ condensing), maka kalor harus dibuang dari uap refrigeran.


Kalor/panas yang akan dibuang dari refrigeran tersebut berasal dari :
1. Panas yang diserap dari evaporator, yaitu dari ruang yang didinginkan.
2. Panas yang ditimbulkan oleh kompresor selama bekerja.

Jelas kiranya , bahwa fungsi kondensor adalah untuk merubah refrigeran gas menjadi cair dengan jalan membuang kalor yang dikandung refrigeran tersebut ke udara sekitarnya atau air sebagai medium pendingin/condensing.

Gas dalam kompresor yang bertekanan rendah dimampatkan/dikompresikan menjadi uap bertekanan tinggi sedemikian rupa, sehingga temperatur jenuh pengembunan (condensing saturation temperature) lebih tinggi dari temperature medium pengemburan (condensing medium temperature). Akibatnya kalor dari uap bertekanan tinggi akan mengalir ke medium pengembunan, sehingga uap refrigean akan terkondensasi.

1.3.3. Flow Control / Katup Ekspansi

Setelah refrigeran terkondensasi di kondensor, refrigeran cair tersebut masuk ke katup ekspansi yang mengontrol jumlah refrigeran yang masuk ke evaporator. Ada banyak jenis katup ekspansi, tiga diantaranya adalah pipa kapiler, katup ekspansi otomatis, dan katup ekspansi termostatik.

a. Pipa Kapiler (capillary tube)
        Katup ekspansi yang umum digunakan untuk sistem refrigerasi rumah tangga adalah pipa kapiler. Pipa kapiler adalah pipa tembaga dengan diameter lubang kecil dan panjang tertentu. Besarnya tekanan pipa kapiler bergantung pada ukuran diameter lubang dan panjang pipa kapiler. Pipa kapiler diantara kondensor dan evaporator
        Refrigeran yang melalui pipa kapiler akan mulai menguap. Selanjutnya berlangsung proses penguapan yang sesungguhnya di evaporator. Jika refrigeran mengandung uap air, maka uap air akan membeku dan menyumbat pipa kapiler. Agar kotoran tidak menyumbat pipa kapiler, maka pada saluran masuk pipa kapiler dipasang saringan yang disebut strainer atau Receiver Drier.
        Ukuran diameter dan panjang pipa kapiler dibuat sedemikian rupa, sehingga refrigeran cair harus menguap pada akhir evaporator. Jumlah refrigeran yang berada dalam sistem juga menentukan sejauh mana refrigeran di dalam evaporator berhenti menguap, sehingga pengisian refrigeran harus cukup agar dapat menguap sampai ujung evaporator. Bila pengisian kurang, maka akan terjadi pembekuan pada sebagian evaporator. Bila pengisian berlebih, maka ada kemungkinan refrigerant cair akan masuk ke kompresor yang akan mengakibatkan rusaknya kompresor. Jadi sistem pipa kapiler mensyaratkan suatu pengisian jumlah refrigeran yang tepat.
     
 b. Katup Ekspansi Otomatis
           Sistem pipa kapiler sesuai digunakan pada sistem-sistem dengan beban tetap (konstan) seperti pada lemari es atau freezer, tetapi dalam beberapa keadaan, untuk beban yang berubah-ubah dengan cepat harus digunakan katup ekspansi jenis lainnya.
         Beberapa katup ekspansi yang peka terhadap perubahan beban, antara lain adalah katup ekspansi otomatis (KEO) yang menjaga agar tekanan hisap atau tekanan evaporator besarnya tetap konstan. 
         Bila beban evaporator bertambah maka temperatur evaporator menjadi naik karena banyak cairan refrigeran yang menguap sehingga tekanan di dalam saluran hisap (di evaporator) akan menjadi naik pula. Akibatnya “bellow” akan bertekan ke atas hingga lubang aliran refrigeran akan menyempit dan ciran refrigeran yang masuk ke evaporator menjadi berkurang. Keadaan ini menyebabkan tekanan evaporator akan berkurang dan “bellow” akan tertekanan ke bawah sehingga katup membuka lebar dan cairan refrigeran akan masuk ke evaporator lebih banyak. Demikian seterusnya.

c. Katup Ekspansi Termostatik (KET)
          Jika KEO bekerja untuk mempertahankan tekanan konstan di evaporator, maka katup ekspansi termostatik (KET) adalah satu katup ekspansi yang mempertahankan besarnya panas lanjut pada uap refrigeran di akhir evaporator tetap konstan, apapun kondisi beban di evaporator. 

 Cara kerja KET adalah sebagai berikut :
 Jika beban bertambah, maka cairan refrigran di evaporator akan lebih banyak menguap, sehingga besarnya suhu panas lanjut di evaporator akan meningkat. Pada akhir evaporator diletakkan tabung sensor suhu (sensing bulb) dari KET tersebut. Peningkatan suhu dari evaporator akan menyebabkan uap atau cairan yang terdapat ditabung sensor suhu tersebut akan menguap (terjadi pemuaian) sehingga tekanannya meningkat. Peningkatan tekanan tersebut akan menekan diafragma ke bawah dan membuka katup lebih lebar. Hal ini menyebabkan cairan refrigeran yang berasal dari kondensor akan lebih banyak masuk ke evaporator. Akibatnya suhu panas lanjut di evaporator kembali pada keadaan normal, dengan kata lain suhu panas lanjut di evaporator di
jaga tetap konstan pada segala keadaan beban.


 1.3.4. Evaporator

Pada evaporator, refrigeran menyerap kalor dari ruangan yang didinginkan. Penyerapan kalor ini menyebabkan refrigeran mendidih dan berubah wujud dari cair menjadi uap (kalor/panas laten).


    Panas yang dipindahkan berupa :

 1. Panas sensibel (perubahan tempertaur) 
      Temperatur refrigeran yang memasuki evaporator dari katup ekspansi harus demikian sampai temperatur jenuh penguapan (evaporator saturation temparature). Setelah terjadi penguapan, temperatur uap yang meninggalkan evaporator harus pupa dinaikkan untuk mendapatkan kondisi uap panas lanjut (super-heated vapor)
  
    2. Panas laten (perubahan wujud)
       Perpindahan panas terjadi penguapan refrigeran. Untuk terjadinya perubahan wujud, diperlukan panas laten. Dalam hal ini perubahan wujud tersebut adalah dari cair menjadi uap atau menguap (evaporasi). Refrigeran akan menyerap panas dari ruang sekelilingnya. Adanya proses perpindahan panas pada evaporator dapat menyebabkan perubahan wujud dari cair menjadi uap.

Kapasitas evaporator adalah kemampuan evaporator untuk menyerap panas dalam periode waktu tertentu dan sangat ditentukan oleh perbedaan temperatur evaporator
(evaporator temperature difference).

Perbedaan tempertur evaporator adalah perbedaan antara temperatur jenis evaporator (evaporator saturation temperature) dengan temperatur substansi/benda yang didinginkan.

Kemampuan memindahkan panas dan konstruksi evaporator (ketebalan, panjang
dan sirip) akan sangat mempengaruhi kapaistas evaporator.

No comments:

Post a Comment